3.1.84 \(\int \frac {x^3 (A+B x^2)}{(b x^2+c x^4)^3} \, dx\) [84]

Optimal. Leaf size=97 \[ -\frac {A}{2 b^3 x^2}+\frac {b B-A c}{4 b^2 \left (b+c x^2\right )^2}+\frac {b B-2 A c}{2 b^3 \left (b+c x^2\right )}+\frac {(b B-3 A c) \log (x)}{b^4}-\frac {(b B-3 A c) \log \left (b+c x^2\right )}{2 b^4} \]

[Out]

-1/2*A/b^3/x^2+1/4*(-A*c+B*b)/b^2/(c*x^2+b)^2+1/2*(-2*A*c+B*b)/b^3/(c*x^2+b)+(-3*A*c+B*b)*ln(x)/b^4-1/2*(-3*A*
c+B*b)*ln(c*x^2+b)/b^4

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1598, 457, 78} \begin {gather*} -\frac {(b B-3 A c) \log \left (b+c x^2\right )}{2 b^4}+\frac {\log (x) (b B-3 A c)}{b^4}+\frac {b B-2 A c}{2 b^3 \left (b+c x^2\right )}-\frac {A}{2 b^3 x^2}+\frac {b B-A c}{4 b^2 \left (b+c x^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(A + B*x^2))/(b*x^2 + c*x^4)^3,x]

[Out]

-1/2*A/(b^3*x^2) + (b*B - A*c)/(4*b^2*(b + c*x^2)^2) + (b*B - 2*A*c)/(2*b^3*(b + c*x^2)) + ((b*B - 3*A*c)*Log[
x])/b^4 - ((b*B - 3*A*c)*Log[b + c*x^2])/(2*b^4)

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1598

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {x^3 \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^3} \, dx &=\int \frac {A+B x^2}{x^3 \left (b+c x^2\right )^3} \, dx\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {A+B x}{x^2 (b+c x)^3} \, dx,x,x^2\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \left (\frac {A}{b^3 x^2}+\frac {b B-3 A c}{b^4 x}-\frac {c (b B-A c)}{b^2 (b+c x)^3}-\frac {c (b B-2 A c)}{b^3 (b+c x)^2}-\frac {c (b B-3 A c)}{b^4 (b+c x)}\right ) \, dx,x,x^2\right )\\ &=-\frac {A}{2 b^3 x^2}+\frac {b B-A c}{4 b^2 \left (b+c x^2\right )^2}+\frac {b B-2 A c}{2 b^3 \left (b+c x^2\right )}+\frac {(b B-3 A c) \log (x)}{b^4}-\frac {(b B-3 A c) \log \left (b+c x^2\right )}{2 b^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 86, normalized size = 0.89 \begin {gather*} \frac {-\frac {2 A b}{x^2}+\frac {b^2 (b B-A c)}{\left (b+c x^2\right )^2}+\frac {2 b (b B-2 A c)}{b+c x^2}+4 (b B-3 A c) \log (x)-2 (b B-3 A c) \log \left (b+c x^2\right )}{4 b^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(A + B*x^2))/(b*x^2 + c*x^4)^3,x]

[Out]

((-2*A*b)/x^2 + (b^2*(b*B - A*c))/(b + c*x^2)^2 + (2*b*(b*B - 2*A*c))/(b + c*x^2) + 4*(b*B - 3*A*c)*Log[x] - 2
*(b*B - 3*A*c)*Log[b + c*x^2])/(4*b^4)

________________________________________________________________________________________

Maple [A]
time = 0.38, size = 102, normalized size = 1.05

method result size
norman \(\frac {\frac {c \left (3 A c -B b \right ) x^{7}}{b^{3}}-\frac {A \,x^{3}}{2 b}+\frac {c^{2} \left (9 A c -3 B b \right ) x^{9}}{4 b^{4}}}{x^{5} \left (c \,x^{2}+b \right )^{2}}-\frac {\left (3 A c -B b \right ) \ln \left (x \right )}{b^{4}}+\frac {\left (3 A c -B b \right ) \ln \left (c \,x^{2}+b \right )}{2 b^{4}}\) \(100\)
default \(\frac {c \left (\frac {\left (3 A c -B b \right ) \ln \left (c \,x^{2}+b \right )}{c}-\frac {b^{2} \left (A c -B b \right )}{2 c \left (c \,x^{2}+b \right )^{2}}-\frac {b \left (2 A c -B b \right )}{c \left (c \,x^{2}+b \right )}\right )}{2 b^{4}}-\frac {A}{2 b^{3} x^{2}}+\frac {\left (-3 A c +B b \right ) \ln \left (x \right )}{b^{4}}\) \(102\)
risch \(\frac {-\frac {c \left (3 A c -B b \right ) x^{4}}{2 b^{3}}-\frac {3 \left (3 A c -B b \right ) x^{2}}{4 b^{2}}-\frac {A}{2 b}}{x^{2} \left (c \,x^{2}+b \right )^{2}}-\frac {3 \ln \left (x \right ) A c}{b^{4}}+\frac {\ln \left (x \right ) B}{b^{3}}+\frac {3 \ln \left (-c \,x^{2}-b \right ) A c}{2 b^{4}}-\frac {\ln \left (-c \,x^{2}-b \right ) B}{2 b^{3}}\) \(108\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(B*x^2+A)/(c*x^4+b*x^2)^3,x,method=_RETURNVERBOSE)

[Out]

1/2/b^4*c*((3*A*c-B*b)/c*ln(c*x^2+b)-1/2*b^2*(A*c-B*b)/c/(c*x^2+b)^2-b*(2*A*c-B*b)/c/(c*x^2+b))-1/2*A/b^3/x^2+
(-3*A*c+B*b)*ln(x)/b^4

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 109, normalized size = 1.12 \begin {gather*} \frac {2 \, {\left (B b c - 3 \, A c^{2}\right )} x^{4} - 2 \, A b^{2} + 3 \, {\left (B b^{2} - 3 \, A b c\right )} x^{2}}{4 \, {\left (b^{3} c^{2} x^{6} + 2 \, b^{4} c x^{4} + b^{5} x^{2}\right )}} - \frac {{\left (B b - 3 \, A c\right )} \log \left (c x^{2} + b\right )}{2 \, b^{4}} + \frac {{\left (B b - 3 \, A c\right )} \log \left (x^{2}\right )}{2 \, b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^2+A)/(c*x^4+b*x^2)^3,x, algorithm="maxima")

[Out]

1/4*(2*(B*b*c - 3*A*c^2)*x^4 - 2*A*b^2 + 3*(B*b^2 - 3*A*b*c)*x^2)/(b^3*c^2*x^6 + 2*b^4*c*x^4 + b^5*x^2) - 1/2*
(B*b - 3*A*c)*log(c*x^2 + b)/b^4 + 1/2*(B*b - 3*A*c)*log(x^2)/b^4

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 197 vs. \(2 (89) = 178\).
time = 1.80, size = 197, normalized size = 2.03 \begin {gather*} \frac {2 \, {\left (B b^{2} c - 3 \, A b c^{2}\right )} x^{4} - 2 \, A b^{3} + 3 \, {\left (B b^{3} - 3 \, A b^{2} c\right )} x^{2} - 2 \, {\left ({\left (B b c^{2} - 3 \, A c^{3}\right )} x^{6} + 2 \, {\left (B b^{2} c - 3 \, A b c^{2}\right )} x^{4} + {\left (B b^{3} - 3 \, A b^{2} c\right )} x^{2}\right )} \log \left (c x^{2} + b\right ) + 4 \, {\left ({\left (B b c^{2} - 3 \, A c^{3}\right )} x^{6} + 2 \, {\left (B b^{2} c - 3 \, A b c^{2}\right )} x^{4} + {\left (B b^{3} - 3 \, A b^{2} c\right )} x^{2}\right )} \log \left (x\right )}{4 \, {\left (b^{4} c^{2} x^{6} + 2 \, b^{5} c x^{4} + b^{6} x^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^2+A)/(c*x^4+b*x^2)^3,x, algorithm="fricas")

[Out]

1/4*(2*(B*b^2*c - 3*A*b*c^2)*x^4 - 2*A*b^3 + 3*(B*b^3 - 3*A*b^2*c)*x^2 - 2*((B*b*c^2 - 3*A*c^3)*x^6 + 2*(B*b^2
*c - 3*A*b*c^2)*x^4 + (B*b^3 - 3*A*b^2*c)*x^2)*log(c*x^2 + b) + 4*((B*b*c^2 - 3*A*c^3)*x^6 + 2*(B*b^2*c - 3*A*
b*c^2)*x^4 + (B*b^3 - 3*A*b^2*c)*x^2)*log(x))/(b^4*c^2*x^6 + 2*b^5*c*x^4 + b^6*x^2)

________________________________________________________________________________________

Sympy [A]
time = 0.59, size = 107, normalized size = 1.10 \begin {gather*} \frac {- 2 A b^{2} + x^{4} \left (- 6 A c^{2} + 2 B b c\right ) + x^{2} \left (- 9 A b c + 3 B b^{2}\right )}{4 b^{5} x^{2} + 8 b^{4} c x^{4} + 4 b^{3} c^{2} x^{6}} + \frac {\left (- 3 A c + B b\right ) \log {\left (x \right )}}{b^{4}} - \frac {\left (- 3 A c + B b\right ) \log {\left (\frac {b}{c} + x^{2} \right )}}{2 b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(B*x**2+A)/(c*x**4+b*x**2)**3,x)

[Out]

(-2*A*b**2 + x**4*(-6*A*c**2 + 2*B*b*c) + x**2*(-9*A*b*c + 3*B*b**2))/(4*b**5*x**2 + 8*b**4*c*x**4 + 4*b**3*c*
*2*x**6) + (-3*A*c + B*b)*log(x)/b**4 - (-3*A*c + B*b)*log(b/c + x**2)/(2*b**4)

________________________________________________________________________________________

Giac [A]
time = 1.36, size = 105, normalized size = 1.08 \begin {gather*} \frac {{\left (B b - 3 \, A c\right )} \log \left ({\left | x \right |}\right )}{b^{4}} - \frac {{\left (B b c - 3 \, A c^{2}\right )} \log \left ({\left | c x^{2} + b \right |}\right )}{2 \, b^{4} c} + \frac {2 \, {\left (B b^{2} c - 3 \, A b c^{2}\right )} x^{4} - 2 \, A b^{3} + 3 \, {\left (B b^{3} - 3 \, A b^{2} c\right )} x^{2}}{4 \, {\left (c x^{2} + b\right )}^{2} b^{4} x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^2+A)/(c*x^4+b*x^2)^3,x, algorithm="giac")

[Out]

(B*b - 3*A*c)*log(abs(x))/b^4 - 1/2*(B*b*c - 3*A*c^2)*log(abs(c*x^2 + b))/(b^4*c) + 1/4*(2*(B*b^2*c - 3*A*b*c^
2)*x^4 - 2*A*b^3 + 3*(B*b^3 - 3*A*b^2*c)*x^2)/((c*x^2 + b)^2*b^4*x^2)

________________________________________________________________________________________

Mupad [B]
time = 0.15, size = 107, normalized size = 1.10 \begin {gather*} \frac {\ln \left (c\,x^2+b\right )\,\left (3\,A\,c-B\,b\right )}{2\,b^4}-\frac {\frac {A}{2\,b}+\frac {3\,x^2\,\left (3\,A\,c-B\,b\right )}{4\,b^2}+\frac {c\,x^4\,\left (3\,A\,c-B\,b\right )}{2\,b^3}}{b^2\,x^2+2\,b\,c\,x^4+c^2\,x^6}-\frac {\ln \left (x\right )\,\left (3\,A\,c-B\,b\right )}{b^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(A + B*x^2))/(b*x^2 + c*x^4)^3,x)

[Out]

(log(b + c*x^2)*(3*A*c - B*b))/(2*b^4) - (A/(2*b) + (3*x^2*(3*A*c - B*b))/(4*b^2) + (c*x^4*(3*A*c - B*b))/(2*b
^3))/(b^2*x^2 + c^2*x^6 + 2*b*c*x^4) - (log(x)*(3*A*c - B*b))/b^4

________________________________________________________________________________________